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Background & Motivation

Modern online service providers utilize load balancing in cloud data centers to distribute
traffic across large server clusters. Typically, these service providers deploy Layer-7 load
balancers to correctly distribute traffic to server clusters running different services.

Figure 1 shows the architecture of a typical Layer-7 load balancer. The load balancer inspects
the packet headers and payloads to determine the service type and the corresponding server
cluster. Then, it forwards the packets to the selected server cluster.
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Figure 1. The architecture of a typical Layer-7 load balancer.

However, the increasing demand for high throughput and low latency in cloud data centers
has outpaced the capabilities of traditional software Layer-7 load balancers, since the generic
CPUs are not optimized for the high-speed packet processing required by Layer-7 load bal-
ancing.

The emergence of programmable network hardware, e.g., the programmable switch, has en-
abled offloading some stateless operations onto the hardware, thereby significantly reducing
the load on server CPUs. Programmable switches utilize programmable ASICs to achieve
∼Tbps line-rate packet processing, enabling operators to modify packet headers based on
customized rules.

So, our question is that can we leverage programmable switches to perform part of the
Layer-7 load balancing tasks to replace some server resources?

System Overview

The core idea of is Hardware-Software Co-design with Proper Layer-7 Load Balancing
Partitioning to fully leverage the high packet processing speed of programmable switches
and the flexible computing capability of CPUs. This co-design is motivated by the strengths
and limitations of programmable switches: while they excel in high-speed forwarding, their
memory resources and L7 protocol processing capabilities are limited. In contrast, general-
purpose servers offer abundant memory resources and strong L7 protocol processing capa-
bilities but lack efficient forwarding performance.

Miresga partitions the Layer-7 load balancing tasks into three sub-tasks and uses three
components, the programmable switch, the front-end server, and the back-end agent to
handle them:

1. Connection Establishment: The programmable switch is responsible for establishing
connections and handling SYN packets, while the front-end server is responsible for con-
nection splicing.

2. Application Protocol Parsing and Decision: The front-end server is responsible for pars-
ing the application protocol headers and making routing decisions.

3. Header Rewriting: The programmable switch is responsible for modifying the IP and
port, while the back-end agent is responsible for modifying the seq/ack numbers.
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Figure 2. The architecture of Miresga

References

[1] Rohan Gandhi, Y Charlie Hu, and Ming Zhang. Yoda: A highly available layer-7 load balancer. In Proceedings of the Eleventh
European Conference on Computer Systems, pages 1–16, 2016.

[2] Yutaro Hayakawa, Michio Honda, Douglas Santry, and Lars Eggert. Prism: Proxies without the pain. In 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21), pages 535–549, 2021.

[3] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. Silkroad: Making stateful layer-4 load balancing fast
and cheap using switching asics. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication,
pages 15–28, 2017.

[4] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and KyoungSoo Park. Acceltcp: Accelerating network
applications with stateful tcp offloading. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20),
pages 77–92, 2020.

[5] Sophia Yoo, Xiaoqi Chen, and Jennifer Rexford. SmartCookie: Blocking Large-Scale SYN floods with a Split-Proxy defense on
programmable data planes. In 33rd USENIX Security Symposium (USENIX Security 24), pages 217–234, Philadelphia, PA, August
2024. USENIX Association.

[6] Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong Wang, Luyang Li, Wenchen Han, Nan Chen, Lebing Wan, Lichao Liu, Zhipeng
Ding, et al. Tiara: A scalable and efficient hardware acceleration architecture for stateful layer-4 load balancing. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22), pages 1345–1358, 2022.

Challenges & Design Details

Challenge 1: The finite memory resources inherent in programmable switches limit their
ability to accommodate increased traffic volumes.

Firstly, Miresga compresses the stored table entries by merging the two entries correspond-
ing to inbound and outbound traffic, and it employs a single index to obviate the need for
storing the complete backend IP and port information. What’s more, modifications to the
sequence and acknowledgment numbers are delegated to the backend agent that leverages
eBPF technology, as this component is not amenable to compression.

Challenge 2: The intricate kernel protocol stack contributes to the inefficiency of front-
end servers.

Miresga employs DPDK technology to bypass the kernel protocol stack and constructs a
lightweight protocol stack. Specifically, we consolidate the states of the two connections—
between the front-end server and the client, and between the front-end server and the
back-end server—into a single flow state. In this design, the front-end server is solely re-
sponsible for packet forwarding, while tasks such as retransmission and congestion control
are delegated to the client and the back-end servers.
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Figure 3. The FSM of the lightweight stack.

Challenge 3: State synchronization among the three components introduces additional
overhead.

In Miresga, two types of states require synchronization: 1) the initial sequence numbers,
and 2) the information for splicing connections to the offloaded flows. To synchronize
the initial sequence number, Miresga fuses the initial sequence numbers into the regular
packets to avoid additional delivery. For the latter, Miresga employs an asynchronous syn-
chronization method that does not obstruct traffic flow during the synchronization process.
Instead, the front-end server initially handles the traffic, and once synchronization is com-
pleted, processing is then transferred to the programmable switch.

Evaluation

We primarily evaluated Miresga’s end-to-end latency and throughput. The evaluation was
conducted across two scenarios: (1) a fixed message size (Figure 4a and Figure 4b), and (2)
message sizes generated according to a specific heavy-tailed distribution (Figure 4c and Figure
4d).
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(a) Latency with different message sizes
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(b) Throughput with different message sizes
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(c) Latency with heavy-tailed traffic distribu-
tions

Traffic 1 Traffic 2 Traffic 3
Distribution

0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
/G

bp
s

Miresga
HAProxy
Prism

(d) Throughput with heavy-tailed traffic dis-
tributions

Figure 4. End-to-end throughput and latency comparison with different message sizes and
using heavy-tailed traffic distributions. The distribution of the response size in Traffic 1 is
100% 1KB; Traffic 2 is 70% 1KB, 20% 10KB, 8% 1MB, and 2% 10MB. The distribution of the
response size in Traffic 2 is 50% 1KB, 30% 10KB, 15% 1MB and 5% 10MB. We only measure the
latency of 1KB message when using heavy-tailed traffic.


