Towards Chain-Aware Scaling Detection in NFV with Reinforcement Learning

Lin He, Lishan Li, Ying Liu

Network Function Virtualization

- Introduce custom packet processing functions into the network
 - offer the potential to enhance service delivery flexibility and reduce overall operational expenses
 - enable elastic scaling by creating and destroying VNF instances
- Primary goals of elastic scaling
 - satisfy service level agreements (SLAs)
 - minimize VNF operating cost

Firewall

Caching Int Proxy Prev

Intrusion Traffic Prevention scrubber

Load balancer

SSL

Gateway

WAN optimizer

• • •

Existing Solutions

- Rate-based
 - Estimate the upcoming traffic rate and then compute the number of required instances that can process the estimated traffic demand.
 - Examples: Wang et al.^[Cloud'16], SLFL^[CloudNet'15], Zhang et al. ^[INFOCOM'17], VPCM ^[INFOCOM'18], Tang et al. ^[TPDS'19]
 - The dynamics of upcoming traffic in packet size and type affect instance number computation.

Status-based

- Achieve scaling detection based on VNFs' runtime status, including the applicationand hardware-level parameters.
- Examples: ENVI^[ANCS'18]
- Affected by the collected "raw" status information, which causes imprecise scaling decisions.

The Problem

Existing Solutions: Designed based on a simplified or inaccurate

understanding of deployment environments.

Challenge : How to adjust the scaling strategy and parameters in real time with system changes?

Reinforcement Learning

Solution: Chain-Aware Scaling Detection (CASD)

- Motivation
- CASD Architecture
- Evaluation Results
- Conclusion

CASD Architecture

- Motivation
- CASD Architecture
 - Chain-aware Representation Generation
 - Scaling Detection Model
- Evaluation Results
- Conclusion

Chain-aware Representation Generation

VNF Representation

- Initial state: input, output, latency, cpu, memory
- Not only capture its explicit state but also depict the effects of its children in the chain
- Global Chain Representation
 - regard the chain as a particular VNF summary node
- Chain-aware Representation
 - VNF Representation + Global Chain Representation

Scaling Detection Model

- Neural Network Model
 - Input: Chain-aware representation sequence
 - GRU: Capturing relationship of sequences
- Training Method: A3C
 - Actor Network: Obtain the probability distribution of scaling actions
 - Critic Network: Measure how well the policy performs

- Motivation
- CASD Architecture
- Evaluation Results
- Conclusion

Implementation

- CASD prototype
 - OpenNetVM and DPDK
 - TensorFlow
 - Controller loading training model
- Two Chains
- Two types of traffic patterns
 - Moderate Increase
 - Sharp Increase

Monitor

VPN

13

dst.port != 80

 \bigcap

IDS

Implementation

• Status-NN

- Trained with RL
- Online status
- ENVI

Composite-NN

- Trained with RL
- Online status + traffic rate

Composite-DT

- Decision tree
- Online status + traffic rate

Evaluation

VPN

Evaluation

Evaluation

- CASD Working Process
 - Dynamic change in traffic rate \rightarrow Add/remove instances

- Motivation
- CASD Architecture
- Evaluation Results
- Conclusion

Conclusion

- We present CASD which utilizes reinforcement learning and neural networks to automatically learn scaling detection policies without any human instructions.
 - To further improve agility and system performance, CASD incorporates global chain information into control policies to efficiently plan the scaling sequence of VNFs within the chain.
 - To build CASD, we develop scalable representations for VNFs and global chain, design neural networks based on feature sequence, and utilize the A3C algorithm for model training.
 - We have implemented a prototype on top of the NFV system and compare it with multiple baseline algorithms over different traffic patterns and chains.
 - Evaluation results show that CASD outperforms the state of the arts in terms of overall system cost and packet processing rate.

Thanks!

