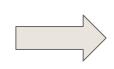
Relation Extraction with Temporal Reasoning Based on Memory Augmented Distant Supervision

Jianhao Yan

Tsinghua University

Background

Distantly Supervised (DS) Relation Extraction



aligning

Motivation

 $\langle Angelina Jolie, Brad Pitt \rangle$

Jolie had fallen in love with Pitt during filming of Mr. & Mrs. Smith (2005)

Pitt and **Jolie** announced their engagement in April 2012 after seven years together.

Jolie and Pitt were married on August 23, 2014, in a private ceremony in Château Miraval, France.

On September 19, 2016, **Jolie** filed for divorce from **Pitt**, citing irreconcilable differences.

Motivation

Jolie had fallen in love with Pitt during filming of Mr. & Mrs. Smith (2005)

Engagement

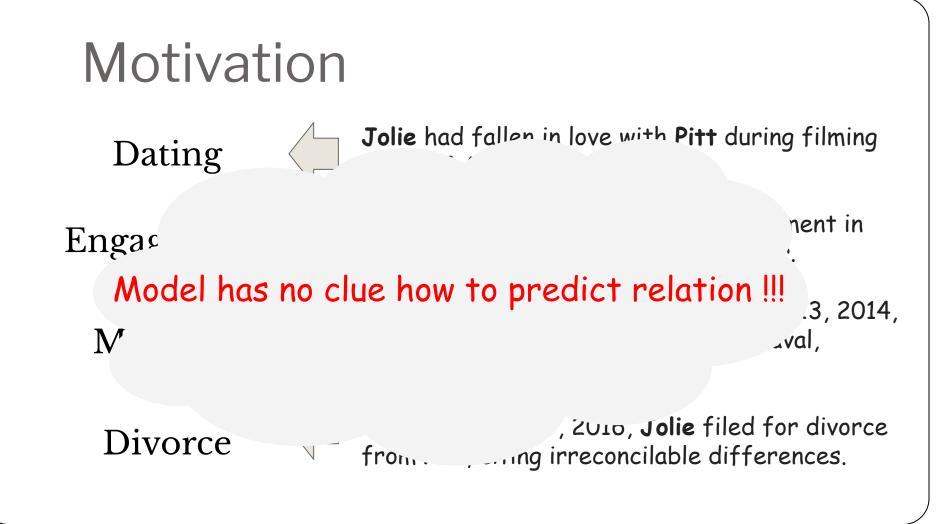
Pitt and **Jolie** announced their engagement in April 2012 after seven years together.

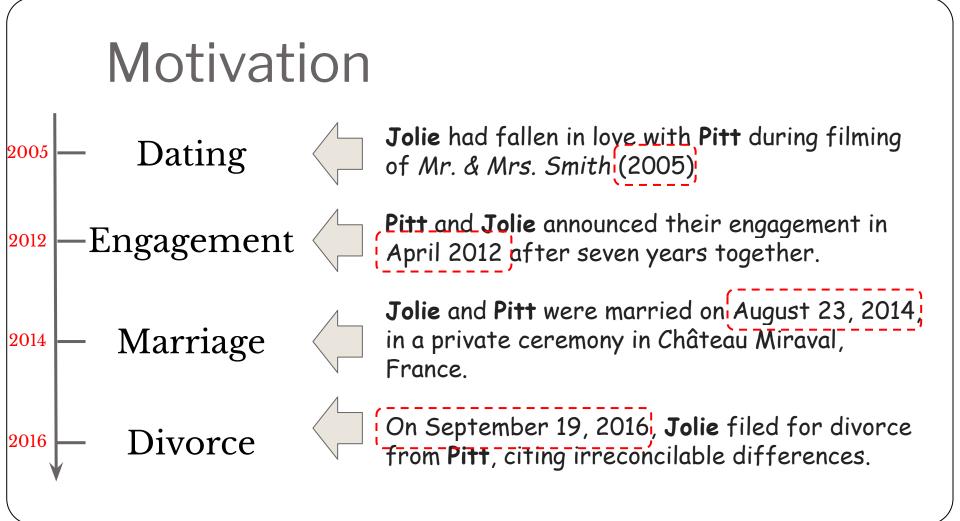
Marriage

Divorce

Jolie and **Pitt** were married on August 23, 2014, in a private ceremony in Château Miraval, France.

On September 19, 2016, **Jolie** filed for divorce from **Pitt**, citing irreconcilable differences.





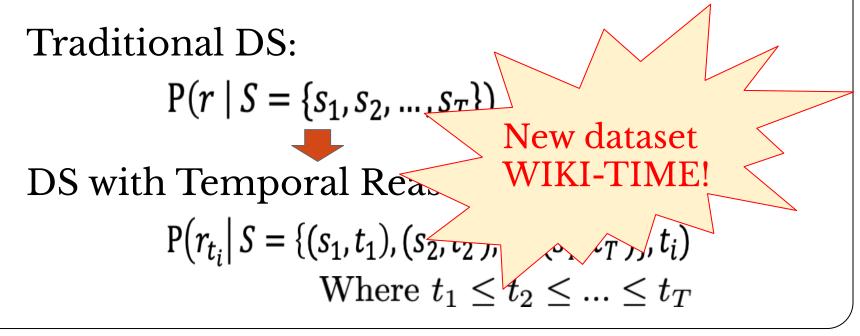
Task Definition

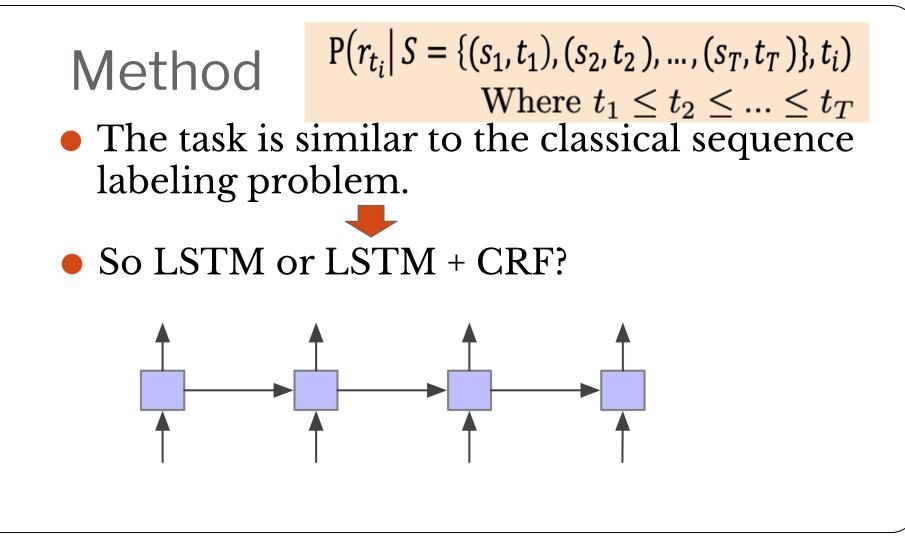
• Introduce temporal information in both the **relation labeling** and the **mention set**.

Traditional DS: $P(r | S = \{s_1, s_2, \dots, s_T\})$ DS with Temporal Reasoning: $P(r_{t_i} | S = \{(s_1, t_1), (s_2, t_2), \dots, (s_T, t_T)\}, t_i)$ Where $t_1 \leq t_2 \leq \ldots \leq t_T$

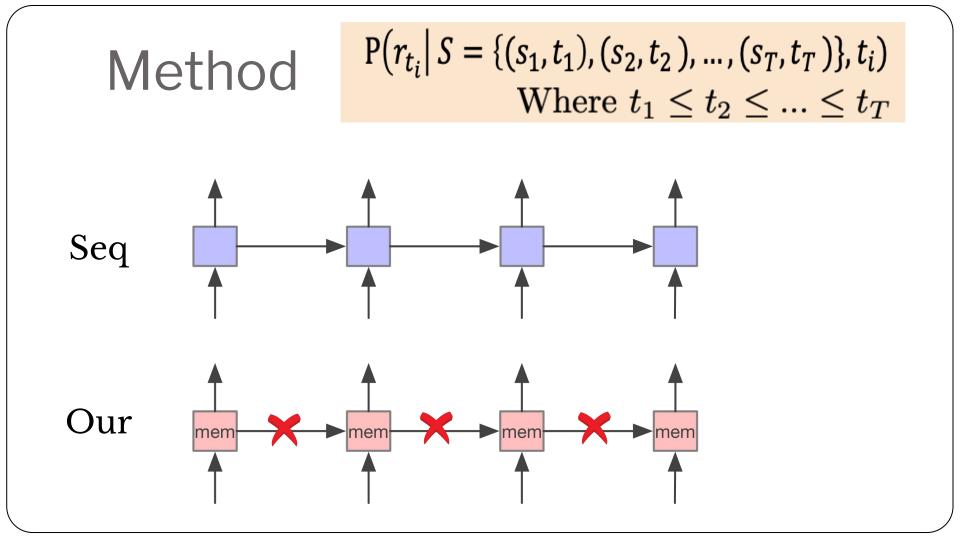
Task Definition

• Introduce temporal information in both the **relation labeling** and the **mention set**.





$P(r_{t_i} | S = \{(s_1, t_1), (s_2, t_2), \dots, (s_T, t_T)\}, t_i)$ Method Where $t_1 \leq t_2 \leq \ldots \leq t_T$ • The task is similar to the classical sequence labeling task. So LSTM or LSTM + CRF? No! Noisy input will destroy sequence model!



Motivation

Sentence-level memory nets.

- Make use of *supporting instances*.
 - In traditional DS, models always use attention and other techniques to denoise.
 - However, there are sentences that are not direct positive examples for the given relation, but can provide supporting evidence

Method

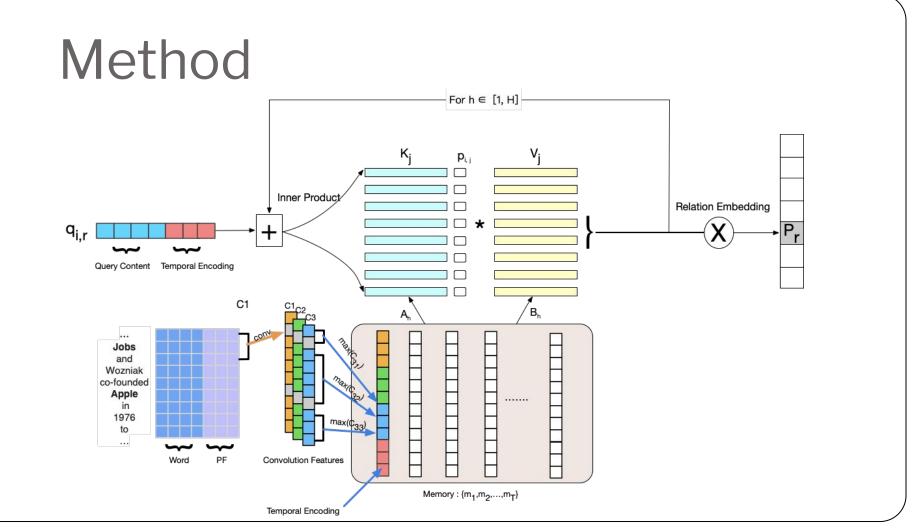
Alleviate the **hard** order dependency effect in sequence model.

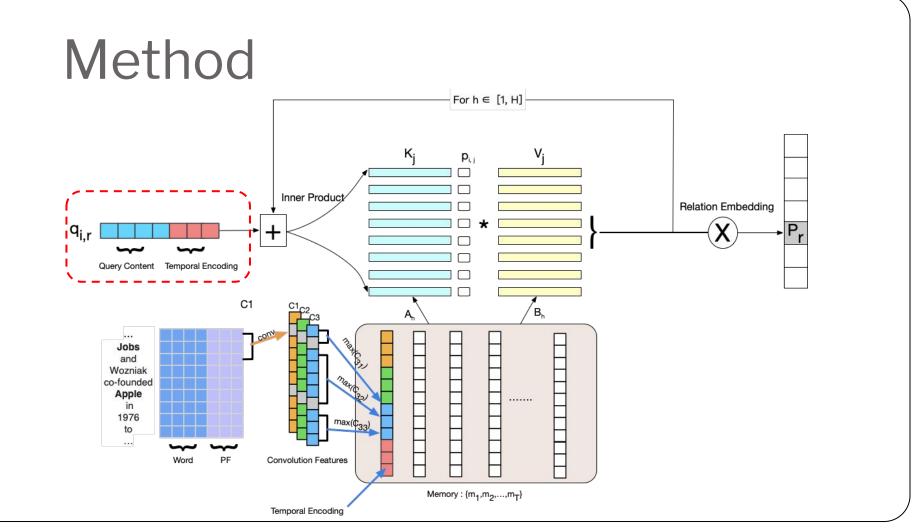
- Construct a query sequence on each mention time spot of mention set.
- Use Memory Nets to introduce sentence-level temporal reasoning.

Method

Alleviate the hard order dependency effect in sequence model.

- Construct a query sequence on each mention time spot of mention set.
- Use Memory Nets to introduce sentence-level temporal reasoning.





Temporal Encoding (TE)

- ★ Several constraints for TE.
 - Should comply with the chronological order of instances.
 - Encoding similarity is only decided by the difference between two time spots.

$$PE(j) = \begin{cases} \sin(j/10000^{d/d_m}) & \text{if } d\% 2 = 0\\ \cos(j/10000^{(d-1)/d_m}) & \text{if } d\% 2 = 1 \end{cases}$$
 [Vaswani et al., 2017]

Query Construction • 4 key variables for RE. (*relation*, e_1 , e_2 , t)

Query Construction 4 key variables for RE. (*relation*, e₁, e₂, t)

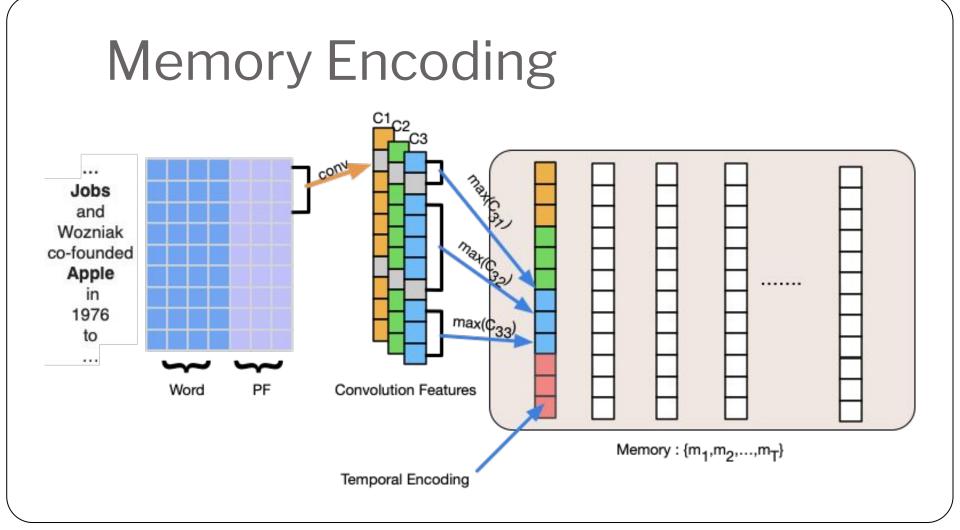
 We split each query into content and temporal encoding.

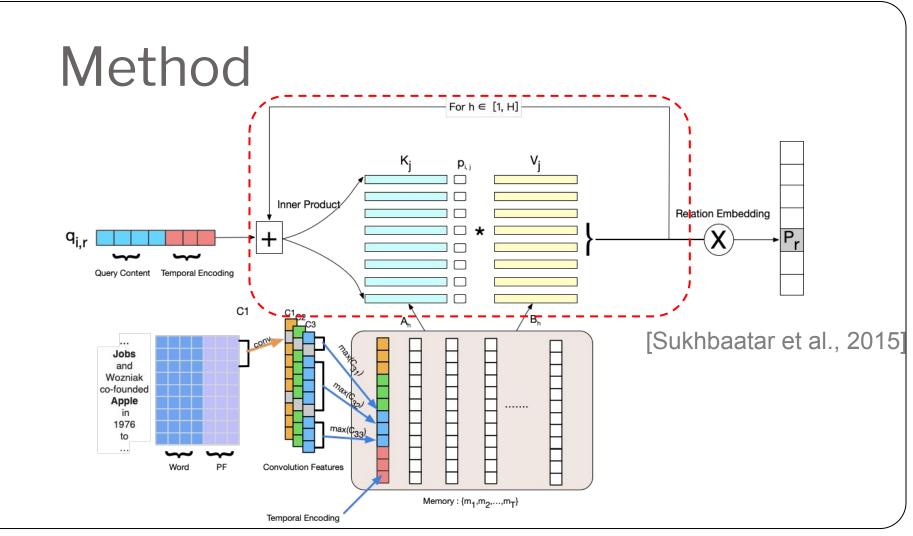
$$q_r = R_r + (E_{e_1} + E_{e_2}) * \Phi_c$$
$$q_{r,i} = [q_r; \lambda \cdot TE(i)]$$

Method

Alleviate the hard order dependency effect in sequence model.

- Construct a query sequence on each mention time spot of mention set.
- Use Memory Nets to introduce sentence-level temporal reasoning.

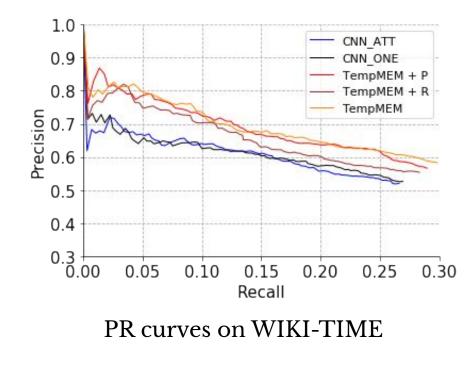




OptimizationQuery-level Cross Entropy by SGD.

$$J(\theta) = \sum_{s=1}^{N_s} \sum_{i=1}^{T} y_t \cdot \log p(\hat{y}_t | S_s, \theta, t_i)$$

Experiment Results(WIKI-TIME)



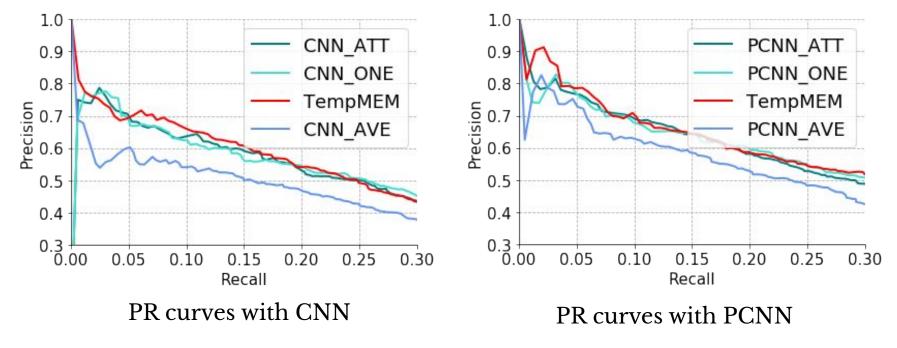
	P@N_200	P@N_300
67.33	67.66	66.45
70.3	68.66	65.78
81.18	82.09	78.41
79.21	78.61	75.42
81.19	79.1	77.41
	67.33 70.3 81.18 79.21	67.3367.6670.368.6681.1882.0979.2178.61

Automatic results on WIKI-TIME

Method	Bag-level F1	Query-level F1
CNN_ATT	39.66	-
CNN_ONE	40.15	-
TempMEM	47.88	54.75
TempMEM+R	46.76	47.83
TempMEM+P	54.86	60.01
N <i>T</i> 1	1. ττ	

Manual results on WIKI-TIME

Experiment Results(NYT-10) NO TEMPORAL INFO!



To Sum Up

- Temporal reasoning task
 - Newly developed dataset WIKI-TIME
- TempMEM model with temporal encoding and sentence-level reasoning
- Experimental results on WIKI-TIME & NYT-10 prove our model achieves better performance.

Thanks. elliottyan37@gmail.com