

WiseCam: Wisely Tuning Wireless Pan-Tilt Cameras for Cost-Effective Moving Object Tracking

Jinlong E S Lin He, Zhenhua Li, and Yunhao Liu Renmin University of China & Tsinghua University

Background

- Wireless Pan-Tilt Cameras
 - Professional surveillance instruments (global market value > \$3 billion)
 - Automatic directional control -> in replace of multiple fixed cameras
- Moving Object Tracking
 - Indoor *DC-supplied* scenarios: elderly/child caring, anti-theft alarming
 - Rural *off-the-grid* environments: farmlands, orchards, and fisheries (potentially conducive to but yet to be deployed)
 - Requirement: *long-term* & *energy-efficient* tracking

State-of-the-art Approaches

- Grid-Based Tracking
 - Applied by pan-tilt cameras with *stepper motors*
 - Moving object detection in each video frame (by detection algorithms like TFD or BS)
 - Searching for *pan-tilt grids* -> the detected object closest to *gaze direction*
 - Time-consuming comparisons and frequent acceleration/deceleration among grids
 - May trigger *backward rotation*

State-of-the-art Approaches

- Target-Based Tracking
 - Applied by pan-tilt cameras with *servo motors* (assembled with fixed camera and tripod head)
 - Similar object detection as grid-based tracking
 - Calculating pan-tilt *rotating angles* based on object center's coordinates to view center
 - Higher rotation speed and position precision
 - Sensitive to small object motions -> excessive stacked rotations

State-of-the-art Approaches

- Fault-Tolerant Boundary
 - Improved approach against continuous violent rotations
 - Object center within a boundary around *view center* -> no rotations
 - Boundary size is subject to object size, speed, and direction
- PID Control
 - Alternative approach to reducing frequency of rotation generation
 - Iteratively obtaining an *error* between object center and *view center*
 - Calculating *rotating angles* based on a weighted sum of the *error*'s proportional, integral, and derivative (PID)

Measurements

- Metrics
 - *Tracking duration*: time that the camera can keep sight of an object
 - *Rotational power consumption*: power increment incurred by rotations
- Methodology
 - Running 4 *state-of-the-art* approaches on *stepper/servo-driven* camera
 - Tracking 50 volunteers with different body sizes and moving speeds
 - Each volunteer walks stochastically around a ~15m² room with two cameras hung in the middle of the ceiling in turn
 - Connecting *power meter* to measure the cameras' power consumption

Measurements

- Observations on Tracking Duration
 - Not ideally long with all approaches (shorter for stepper-driven camera)
 - Sensitivity of *target-based tracking* leads to *asynchronous* rotations
 - Optimal *boundary size* is inconsistent for various volunteers
 - Tuning of *PID coefficients* is complex and costly in practice

Measurements

- Observations on Rotational Power Consumption
 - Continuously considerable power consumption to both cameras
 - Stepper-driven -> always high vs. Servo-driven -> highly variable
 - Energy cost (integral of power consumption) is overall high
 - Incurring power cuts given the typical solar battery's energy budget

Tracking Approaches	Stepper-Driven	Servo-Driven
Grid-Based Tracking	4.546	3.641
Target-Based Tracking	4.095	3.512
With FT Boundary	3.846	3.228
With PID Control	3.639	3.090

Average energy cost (Wh)

Motivation

- Indications
 - State-of-the-art approaches -> inadequate to provide long-term tracking & inapplicable to fulfilling energy-constrained scenarios
 - Performing gimbal rotations based only on *instant* object detection increases the risk of *tracking failure* and *energy costs*
 - Root cause: *stateless nature* derived from industry's *simplicity principle*
- Opportunities
 - Camera keeps *gazing* at the object instead of detecting it in each frame
 - Object state decides camera's *stay point* without dispensable rotations

WiseCam Design

A 1937 A

- Overview
 - Goal: to *minimize* rotation *costs* while maintaining *long-term* tracking
 - *Object Tracker* -> to keep a *close watch* on an object in a *unified* space
 - *RL Agent* -> to efficiently learn *object motion* for *online* determination

Long-Term Moving Object Tracking

- Object Detection and Correlation
 - Integrating regional optical flow with temporal frame differencing (TFD) for object detection -> to precisely obtain complete object contour
 - Leveraging correlation filtering for cross-frame object matching (with position & scale filters) -> to eliminate interference from other objects
- Motion Trajectory Construction
 - Abstracting *critical points* (*object centroid* & *virtual boundary point*) in each frame
 - Transforming their coordinates to a trajectory of *geodetic coordinates* in a *panoramic* space

Online Rotation Determination

- RL Model Formulation
 - State: camera's gaze direction and k quadruples of motion trajectory
 - Action: a pair of pan-tilt rotating angles within the rotation amplitudes
 - Reward: weighted sum of rewards on position, direction, cost, and loss
- Model's internal structure
 - *LSTM*: reasons *implicit features* hidden in the motion trajectory
 - Actor NN: outputs a rotation action
 - Critic NN: judges the action's value

Online Rotation Determination

- Fast-Convergent Training
 - Model should *converge* soon to adapt with *online* determination
 - *Proximal policy optimization (PPO)* -> to update policy smoothly
 - To maximize *cumulative discounted reward* (with *advantage function*)
- Multi-Model Aggregation
 - Quiescent period (without camera rotations) facilitates initial training
 - Drawing on *experience* from *previous* object tracking of the same type
 - *Fusing* NN parameters of the same cell across previous objects' models

Evaluation

- System Implementation
 - Building a prototype on *Raspberry Pi 4B* with *OpenCV* & *TensorFlow*
 - Controlling *stepper-driven* cameras through WiFi and *ONVIF protocol*
 - Controlling *servo-driven* cameras through I2C bus and *PWM drivers*
- Experiment Setup
 - Metrics: *tracking duration* & *rotational power consumption* (*Ditto*)
 - Baselines: *grid-based tracking, improved target-based tracking* (with both *fault-tolerant boundary* and *PID control*)
 - Datasets: 50-volunteer tracking & large-scale daily walking trace

Evaluation

- Improvement at Tracking Duration
 - WiseCam keeps sight of 50 volunteers for 2~8× as long as baselines (due to its cross-frame object correlation and wise determination)
 - For tracking emulation based on *large-scale* trajectory trace, WiseCam's median and tail durations are *much longer* than those of baselines

Evaluation

- Reduction at Power Consumption
 - Baselines exhibit an apparently longer tail, and reduction by WiseCam is *around 40% (due to its ability to refrain from dispensable rotations)*
 - WiseCam can reduce the *servo-driven* camera's energy cost to well support its *daily* object tracking powered by a typical *solar battery*

Tracking Approaches	Stepper-Driven	Servo-Driven
Grid-Based Tracking	4.546	3.641
Target-Based Tracking (Improved)	3.535	2.894
WiseCam	3.056	1.978

Average energy cost (Wh)

Thank you! Q & A